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a b s t r a c t

Many quantitative genetic and adaptive dynamic models suggest that disruptive selection can maintain

genetic polymorphism and be the driving force causing evolutionary divergence. These models also

suggest that disruptive selection arises from frequency-dependent intraspecific competition. For

convenience or historical precedence, these models assume that carrying capacity and competition

functions follow a Gaussian distribution. Here, we propose a new analytical framework that relaxes the

assumption of Gaussian competition and carrying capacity functions, and investigate how alternative

shapes affect the likelihood of disruptive selection. We found that the shape of both carrying capacity

and competition kernels interact to determine the likelihood of disruptive selection. For certain regions

of the parametric space disruptive selection is facilitated, whereas for others it becomes more difficult.

Our results suggest that the relationship between the degree of frequency dependence and the

likelihood of disruptive selection is more complex than previously thought, depending on how

resources are distributed and competition interference takes place. It is now important to describe the

empirical patterns of resource distribution and competition in nature as a way to determine the

likelihood of disruptive selection in natural populations.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In many models of quantitative genetics and adaptive
dynamics intraspecific competition is the driving force causing
disruptive selection (Bürger et al., 2006; Dieckmann and Doebeli,
1999; Doebeli and Dieckmann, 2003; Doebeli et al., 2007;
Rosenzweig, 1978; Taper and Case, 1985; reviewed in Bolnick
and Fitzpatrick, 2007; Turelli et al., 2001). For instance, in the
model of Dieckmann and Doebeli (1999), a monomorphic asexual
population evolves by directional selection to an optimal
phenotype, where intraspecific competition induces disruptive
selection. Disruptive selection occurs because competition is
frequency dependent, so that nearby phenotypes suffer little
competition interference from the crowded optimal phenotype.
As a consequence, evolutionary branching occurs, with the
emergence of two coexisting descendent lineages (Ackermann
and Doebeli, 2004; Dieckmann and Doebeli, 1999). If the degree of
frequency dependence is sufficiently high, the ancestral lineage
may split into several daughter lineages in one single burst,
producing adaptive radiations (Bolnick, 2006).

Most of adaptive dynamic models of sympatric speciation have
assumed the carrying capacity and the competition interference
functions (K and C, respectively) to be Gaussian (Ackermann and
Doebeli, 2004; Bolnick, 2006; Bolnick and Doebeli, 2003;
Dieckmann and Doebeli, 1999; Doebeli and Dieckmann, 2003).
For example, in Dieckmann and Doebeli’s (1999) model, one of the
most relevant results is that evolutionary branching will occur
only when the curvature of C is higher than that of K (scosk). The
use of Gaussian functions, however, has been based either on
arguments of mathematical tractability or on the historical
precedence of models (MacArthur, 1970; MacArthur and Levins,
1967) with questionable biological assumptions (Ackermann and
Doebeli, 2004; Abrams et al., 2008a). In fact, a couple of recent
models have shown that non-Gaussian carrying capacity, resource
utilization, or competition functions can affect evolutionary
dynamics (Abrams et al., 2008b; Doebeli et al., 2007; Leimar
et al., 2008). For example, box-like kernels have been shown to
facilitate evolutionary branching as compared to Gaussian kernels
(Doebeli et al., 2007; Leimar et al., 2008).

Here, we propose a set of non-Gaussian competition and
carrying capacity kernels and investigated the likelihood of
disruptive selection under these kernels, using the Dieckmann
and Doebeli model as a framework. These kernels have a para-
meter that turns it more or less box-like (Fig. 1). This box-like
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function is inspired by the fact that many natural populations rely
on resources that are not continuously distributed, but instead fall
into discrete functional groups corresponding to distinct habitats
or taxa. In natural populations, individuals may sometimes
specialize on only a single prey group even when their population
as a whole uses a number of prey groups (Bolnick et al., 2003).
Individuals thus form trophic clusters, and compete strongly with
other members of their cluster, but little or not at all with
conspecifics that are in other clusters (Araújo et al., 2008). This
clustered diet variation means that intraspecific competition may
fall off very abruptly with phenotypic distance, rather than
declining gradually. More box-like competition functions are
meant to better approximate this abrupt change in competition
intensity. We found that the competition and carrying capacity
functions interact in complex ways, so that the likelihood of
disruptive selection changes depending on the shape of both
functions. For certain regions of the parametric space, disruptive
selection becomes more likely whereas for other regions it
becomes more difficult than in the Gaussian case.

2. Analytical model

We adopted the asexual model proposed in Dieckmann and
Doebeli (1999), in which we consider an initial species whose
individuals have an ecological trait x associated with the use of
resources. The carrying capacity function, K(x), determining the
resource distribution of a consumer with phenotype x is assumed
to be a positive unimodal function of x�x0 with maximum at
x ¼ x0. A simple example of such a function is K(x) ¼ K0 G(x�x0,
sk), where

Gðz;sÞ ¼ e�z2=2s2

(1)

is a Gaussian.
In the present paper, we propose a general family of such

functions with two parameters, b and x, controlling their shape
and width, respectively, that is simple enough to allow the explicit

derivation of several analytical results. The functions are given by

Hðz;b; xÞ ¼ Aftanh½bðz=xþ 1Þ� � tanh½bðz=x� 1Þ�g, (2)

where A�1
¼ 2 tanh(b) is a normalization constant so that

H(0, b, x) ¼ 1 and tanh is the hyperbolic tangent.
This function is convenient because it can assume Gaussian-

like or box-like shapes depending on the value of b (Fig. 1). For the
sake of comparison with previous models, we want to relate H

with G. In order to do that, we must look for the value of b for
which H is as close as possible to G. Expanding both functions to
fourth order around z ¼ 0 and equating the coefficients we find
that cosh(2b) ¼ 2 or b ¼ b� ¼ 0:5 lnð2þ

ffiffiffi
3
p
Þ � 0:658, where cosh

stands for the hyperbolic cosine. This is the critical b for which H

assumes the shape of an approximately Gaussian function for all
values of x (Fig. 1b). For b4b*, H assumes a box-like shape and
for bob* it becomes more spread out than a Gaussian function
(Fig. 1). We also find it useful to rewrite x in terms of a new
parameter s as xðsÞ ¼

ffiffiffi
2
p

b�s= cosh b�, so that H(z, b*, x(s)) is
similar to G(z, s). This allows us to rewrite H in terms of s, which
is useful because we can investigate the conditions for the
establishment of disruptive selection in terms of sc and sk

(Dieckmann and Doebeli, 1999) for different values of b. We must
note that, however similar H(z, b*, s) is to the Gaussian G(z, s), G is
not a particular case of H, which is a price to pay to work with
such a simple analytical function. Even so, for the practical
purposes of this paper we assume that, for b ¼ b*, H can be
compared with previous results using Gaussian functions.

Bearing these considerations in mind, we choose the distribu-
tion of resources as K(x) ¼ K0 H(x�x0, bk, sk) and consider an
initially homogeneous population, where all individuals have the
same trait x. The ecological dynamics of the population is given by

dNðx; tÞ

dt
¼ rNðx; tÞ 1�

Nðx; tÞ

KðxÞ

� �
, (3)

where N(x, t) is the population size at time t and r is the intrinsic
growth rate. The equilibrium is reached at N(x, t) ¼ K(x). If a rare
mutant with trait value y ¼ x+dx is introduced in the resident
population, the mutant population might invade or become
extinct, depending on the values of x, on the properties of K(x)
and on the degree of competition interference between indivi-
duals of different trait values. We model the competition
interference between individuals of trait values x and y by the
function

Cðx; yÞ ¼ Hðy� x;bc ;scÞ.

The dynamics of the mutant population is given by

dNðy; tÞ

dt
¼ rNðy; tÞ 1� Cðx; yÞ

KðxÞ

KðyÞ

� �
� Rðx; yÞNðy; tÞ, (4)

where R(x, y) is the effective growth rate of N(y, t) in the presence
of x. Note that C(x, y)K(x) is the effective population competing for
the same resources with individuals of phenotype y. Since dx is
assumed small, it suffices to expand R(x, y) to first order around
y ¼ x. The solution is then

Nðy; tÞ ¼ Nðy;0Þ eR0 ðxÞðy�xÞt , (5)

where R0(x) ¼ dR(x, y)/dy|y ¼ x. Invasion by the mutants occurs if
the exponent is positive, and extinction if it is negative. Using the
definitions of C(x, y) and K(x) we find

R0ðxÞ ¼ �ðx� x0Þf ðxÞ, (6)

where f(x) is a positive function. Therefore, R0 is negative for x4x0

and positive for xox0, which follows directly from the fact that
K(x) is a positive, unimodal function with maximum at x ¼ x0. This
simple result shows that invasion occurs for y4x if xox0 and for
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Fig. 1. Comparison between Gaussian G(x, s) (gray line) and hyperbolic tangent

H(x, b, s) (black line) functions for several values of b. The larger the b, the more

box-like the function: (a) bob* ¼ 0.658 and H is more spread out than G,

(b) b ¼ b* and H is approximately G, and (c, d) b4b* and H is more box-like than G.

s ¼ 1 for both functions in all plots.

E.M. Baptestini et al. / Journal of Theoretical Biology 259 (2009) 5–116



Author's personal copy

yox if x4x0. As a consequence, x0 is the equilibrium phenotype
for an evolving population.

The stability of the population at x ¼ x0, however, is not
determined by the linear analysis, since R0(x0) ¼ 0. The solution of
Eq. (4) for x ¼ x0 requires the expansion of R(x, y) to second order
around y ¼ x ¼ x0, resulting in

Nðy; tÞ ¼ Nðy;0Þ eR00 ðx0Þðy�x0Þ
2t=2. (7)

The stability depends only on the sign of the second derivative
of R, given explicitly by

R00ðx0Þ ¼ �r C00ðx0; x0Þ �
K 00ðx0Þ

Kðx0Þ

� �
, (8)

where the double prime means the second derivative with respect
to y calculated at y ¼ x ¼ x0. Dieckmann and Doebeli (1999) have
shown that the instability of this equilibrium solution leads to
disruptive selection and to the split of the population into two
lineages.

The condition for disruptive selection is R0040. Therefore, the
relevant feature of the competition and resource functions for
inducing disruptive selection is their second derivative, i.e., their
curvature, calculated at the maximum. For Gaussian functions, the
curvature coincides with the variance. For general functions,
however, curvature and variance are independent quantities and
should not be confused (see Appendix A). The variance of these
functions is actually totally irrelevant for our purposes.

Calculating the derivatives, the condition R0040 becomes

b2
c

s2
c coshðbcÞ

�
b2

k

s2
k coshðbkÞ

40

or

scosk
bc coshðbkÞ

bk coshðbcÞ
� skhðbc ;bkÞ. (9)

Therefore, as long as the competition and carrying capacity
functions have the same shape (same b), Dieckmann and Doebeli’s
(1999) simple condition for speciation, scosk, is recovered. If the
‘weight function’ h(b, bk) multiplying sk is larger than 1,
disruptive selection occurs for a wider range of sc values, i.e., for
stronger competition interference. On the other hand, if it is
smaller than 1, disruptive selection will be restricted to a smaller
range of sc values (Fig. 2a).

As an illustration, let us take the case in which the carrying
capacity function is Gaussian (bk ¼ b*), but the competition
function is allowed to vary from a Gaussian to more box-like
shapes. In this case Eq. (9) reduces to

scohðbc ;b�Þsk �

ffiffiffi
2
p

bc

0:76 cosh bc

sk. (10)

If we start with bc ¼ b*, in which case we have both competition
and carrying capacity Gaussian functions, the coefficient h(bc,
b*) ¼ 1 and the condition for disruptive selection is scosk

(Fig. 2a). As bc increases (recall that b4b* implicates box-like
kernels), h(bc, b*) initially increases, reaching a maximum of
�1.22 for bc�1.146. After that point, h(bc, b*) decreases steadily,
reaching 1 again at bc�1.976 and then becoming increasingly
smaller than 1 (Fig. 2). As a consequence, disruptive selection is
facilitated in relation to the Gaussian case for b*obco1.976, and
becomes increasingly more difficult for bc41.976 (Fig. 2a).

We remark that other families of box-like functions can be
defined. Although it is hard to prove that our results generalize to
any such family, we also consider here, as a second example, the
family of functions generated by convoluting a Gaussian with a

box-shaped kernel (Leimar et al., 2008):

Lðz; f ;sÞ ¼ AL

Z þ2fs

�2fs
e�ðuþzÞ2=2ð1�f Þs2

du, (11)

where s is the width and 0ofo1 determines how much box-like
is the function, f ¼ 0 corresponding to Gaussian and f ¼ 1 to
completely box-like. Examples of L for s ¼ 1 and f ¼ 0.7, 0.9 and 1
can be found in (Leimar et al., 2008). The disadvantage of this
particular family is its implicit form as a definite integral. The
normalization constant is chosen such that L(0, f, s) ¼ 1. The
mathematical details are given in Appendix B.

We also investigated the conditions for disruptive selection
under the alternative family of functions L(z, f, s). As discussed in
Appendix B, the condition for disruptive selection in this case can
also be written in the form scosk h(fc, fk), with h(fc, fk) given by
Eq. (B.1). Although the details of h(fc, fk) are different from those
displayed by h(bc, bk), the general features are clearly very similar
(Fig. 2b).

3. Numerical simulations

We further explored a small part of the analytical parametric
space with an individual-based asexual model, where each
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Fig. 2. Contour plot of the ‘weight function’ h as a function of: (a) bc and bk, and

(b) fc and fk. In the diagonal line, bc ¼ bk, fc ¼ fk, h ¼ 1, and disruptive selection

occurs if scosk. For h41 (light gray, beige, and white) disruptive selection is

facilitated, and for ho1 (dark gray and black) disruptive selection becomes more

difficult with respect to the Gaussian case: (a) the white dotted lines indicate the

critical b (b* ¼ 0.658) where the function is Gaussian. The horizontal white line

represents competition kernels ranging from Gaussian (bc ¼ b*) to box-like

(bc ¼ 4), with a Gaussian carrying capacity function (bk ¼ b*). In this case,

disruptive selection is initially facilitated and becomes more difficult as bc

increases (see Fig. 3) and (b) functions are Gaussian for f ¼ 0 and become

increasingly more box-like as f approaches 1. As in the previous case, for a

Gaussian carrying capacity function (fk ¼ 0) disruptive selection is initially

facilitated (up to fc�0.5) and then becomes increasingly more difficult. (For

interpretation of the references to the color in this figure legend, the reader is

referred to the web version of this article.)

E.M. Baptestini et al. / Journal of Theoretical Biology 259 (2009) 5–11 7
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individual is characterized by a trait value x ranging from �1.0 to
+1.0 that determines its phenotype. Simulations were started with
all individuals in the population having phenotype x ¼ +1.0.
Generations are discrete and individuals experience frequency-
dependent competition for a unimodal resource distribution. At
each time step t, each individual survives with probability

PðxÞ ¼
1

1þ r�1
KðxÞneffzðtÞ

(12)

where r is the per capita number of offspring, K(x) is the carrying
capacity of phenotype x, neffz(t) is the effective population size
that the individual experiences at time t

neffzðtÞ ¼
X

y

Cðx; yÞnyðtÞ (13)

and C(x, y) is the competition function (Bolnick and Doebeli,
2003). The sum runs over all possible trait values y and ny(t) is the
number of individuals with trait value y. Survivors then reproduce
and the number of offspring produced by each individual is given
by a Poisson distribution with mean r ¼ 5. The offspring’s
phenotype can differ from its parents phenotype with probability
m ¼ 0.001 and the amount of change is given by a Normal
distribution with s ¼ 0.05. Evolutionary branching occurs when

the population evolves in two or more subgroups with different
phenotypes.

The analytical results were confirmed by two sets of simula-
tions. First, we fixed K(x) as a Gaussian (bk ¼ b* ¼ 0.658) and
varied C(x, y) from Gaussian to increasingly more box-like shapes.
As expected, when both functions are Gaussian speciation occurs
when scosk (Fig. 3a), further confirming Dieckmann and
Doebeli’s (1999) numerical results. For bc ¼ 1.146 speciation is
facilitated as compared to the Gaussian case (Fig. 3b). As bc

increases further from this value it becomes increasingly more
difficult to speciate (Fig. 3c,d). The linear behavior predicted by
Eq. (9) is well reproduced by small values of sc and sk, although
deviations are clearly seen for larger values, specially in Fig. 3b.
This may indicate that the quadratic approximation used in the
stability analysis of the equilibrium at x ¼ x0 [see Eq. (7)] is not
sufficiently accurate, and that higher order corrections may be
important. By increasing m ¼ 0.003, however, branching occurred
even for the higher values of sc and sk (simulations not shown),
yielding a better approximation to the analytical results. Second,
we verified that the condition scosk for speciation also holds
when both functions are box-like provided that bk ¼ bc (Fig. 4),
showing that Dieckmann and Doebeli’s (1999) result is a
particular case of our model when both K and C are Gaussian.

ARTICLE IN PRESS

Fig. 3. Numerical simulations for a Gaussian-like carrying capacity function (bk ¼ b* ¼ 0.658) and different shapes of the competition function. As bc increases the

competition function becomes more box-like. (a) Gaussian competition function. Disruptive selection is first facilitated (b) and then becomes less likely as bc increases

(c, d). Filled circles indicate values of sc and sk where evolutionary branching occurred; empty circles indicate no branching (after 100,000 generations). Each circle

represents the results of three simulations. The straight line shows the analytical prediction. Parameter values in simulations were m ¼ 0.001, K0 ¼ 500, r ¼ 5 and s ¼ 0.05.

E.M. Baptestini et al. / Journal of Theoretical Biology 259 (2009) 5–118
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4. Discussion

We found evidence that the occurrence of disruptive selection
can be greatly affected by the shape of both the carrying capacity
and competition kernels. If for example resources are normally
distributed and the competition function is extremely box-like,
disruptive selection will depend on very high levels of frequency
dependence (very low sc). On the other hand, the likelihood of
disruptive selection is also affected by the shape of the carrying
capacity function. Extreme box-like resource functions coupled
with Gaussian competition functions actually facilitate evolu-
tionary branching (Fig. 2). It is thus the interaction between the
shapes of the resource and the competition function that will
ultimately determine the likelihood of disruptive selection. Our
results, therefore, add to the growing literature showing that the
shape of the resource and competition kernels can substantially
affect the outcome of evolutionary models (Abrams et al., 2008b;
Doebeli et al., 2007; Leimar et al., 2008).

Our findings seem to be general and not to depend on the
particular family of box-like functions chosen. This is indicated by
the fact that we found qualitatively similar results by investigat-
ing two different classes of box-like kernels (Fig. 2). We note that
the class of kernels we propose here allows totally analytical
solutions and offers an advantage in terms of mathematical
simplicity as compared to the kernels used by Leimar et al. (2008).
At first glance, however, there seems to be a contradiction
between our results and those of Leimar et al. (2008). One of
the main conclusions of their study was that when the carrying
capacity function is Gaussian, box-like competition kernels induce
phenotypic clustering, whereas our results indicate that evolu-
tionary branching will be hindered in this scenario. This contra-
diction becomes even more striking if we notice that the values of
the parameter f used by Leimar et al. (2008) to generate box-like
kernels (f ¼ 0.7 and 0.9) fall into the region in which disruptive
selection is actually hindered (Fig. 2b). This apparent contra-
diction can be resolved if we note that Leimar’s et al. (2008) is a
spatially explicit model, in which individuals are distributed along
an environmental gradient. In their model, the strength of
intraspecific competition is determined both by phenotypic and
spatial distance. Such spatial gradients are known to greatly
facilitate pattern formation, because the emerging correlation
between spatial location and phenotype increases the degree of

frequency dependence in the system (Doebeli and Dieckmann,
2003). Additionally, it is well known that kernels with sharp
boundaries (e.g. box-like), whose Fourier transforms display
negative regions, promote pattern formation in space (Sayama
et al. 2002; de Aguiar et al. 2003). In the spatially explicit adaptive
dynamic models, local adaptation leads to a correlation between
geographical space and phenotype (Doebeli and Dieckmann,
2003; Leimar et al., 2008). Thus we posit that it is the clustering
in geographical space caused by box-like spatial competition
kernels that promotes clustering in phenotypic space via the
correlation between geographical space and phenotype. There-
fore, we conclude that extreme box-like competition kernels
indeed facilitate evolutionary branching in spatially explicit
models (Leimar et al., 2008), but will hinder it in the absence of
spatial gradients (this study). It should also be mentioned that
Leimar et al. (2008) investigated the parametric region in which
selection acting locally was stabilizing—skos0, where s0 repre-
sents the width of the phenotypic competition kernel and is
analog to our sc—, so that pattern formation can only occur along
the spatial gradient. It would be interesting to extend their
treatment to the case where local selection is disruptive (sk4s0)
and investigate the effects of the shape of the kernels. We
hypothesize that for low degrees of boxing, pattern formation
would be greatly facilitated by the joint action of disruptive
selection acting locally (recall that low degrees of boxing facilitate
disruptive selection; Fig. 2) and clustering across the spatial
gradient. In this case, each spatial cluster would be subdivided
into two or more phenotypic clusters, each with a different
phenotypic mode. Additionally, the phenotypic clusters would be
scattered randomly over space within each spatial cluster.
However, as the kernels became increasingly more box-like,
disruptive selection will be hindered and a single spatial
population should be found in each cluster.

There is now empirical evidence that intraspecific competition
can cause diet variation so that individuals with different
phenotype resort to different resources (Araújo et al., 2008;
Svanbäck and Persson, 2004; Svanbäck and Bolnick, 2007;
Swanson et al., 2003). In this scenario, competition is frequency
dependent, which may drive disruptive selection in natural
populations (Bolnick, 2004; Bolnick and Lau, 2008; Calbeek and
Smith, 2007; Pfennig et al., 2007). Diet variation within popula-
tions seems to be a widespread phenomenon (Bolnick et al.,
2003). How often this diet variation will lead to disruptive
selection will depend, as shown by our study, on the shapes of
carrying capacity and competition kernels.

Disruptive selection is known to be unstable on theoretical
grounds (Roughgarden, 1979) and as a consequence has been
downplayed as a transient and infrequent evolutionary phenom-
enon (Endler, 1986). However, if intraspecific competition is
frequency dependent, disruptive selection may be stable (Abrams
et al., 1993; Rosenzweig, 1978; Rueffler et al., 2006; Wilson and
Turelli, 1986). Stable disruptive selection in turn may be an
important evolutionary force in maintaining or increasing quan-
titative genetic variation (Bürger, 2002; Polechová and Barton,
2005; Roughgarden, 1972), causing sexual dimorphism (Bolnick
and Doebeli, 2003) or even speciation (Bolnick, 2006; Bürger et al.,
2006; Dieckmann and Doebeli, 1999; Doebeli and Dieckmann,
2003; Doebeli et al., 2007). Regardless of the consequences of
disruptive selection for natural populations, it is important to
understand the ecological settings promoting or hindering it in
the first place.

By investigating more box-like functions, we hope to approx-
imate more realistic competition functions that reflect the more
discrete structure of many resources. To the extent that intraspe-
cific diet variation occurs as distinct dietary groups, with strong
diet overlap within groups and weak overlap between groups

ARTICLE IN PRESS

Fig. 4. Numerical simulations for bc ¼ bk ¼ 3. Filled circles indicate values of sc

and sk where branching occurred, whereas empty circles indicate no branching

(after 100,000 generations). Each circle represents the results of three simulations.

The straight line shows the analytical prediction. Parameter values are the same as

in Fig. 3.
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(Araújo et al., 2008), box-like functions may be more appropriate.
The choice of Gaussian functions in most models of quantitative
genetics and adaptive dynamics so far (Ackermann and Doebeli,
2004; Bolnick, 2006; Bolnick and Doebeli, 2003; Bürger et al.,
2006; Dieckmann and Doebeli, 1999; Roughgarden, 1972; Taper
and Case, 1985) has been based either on mathematical
convenience or historical precedence of some classical models
(MacArthur, 1970; MacArthur and Levins, 1967) whose stringent
assumptions and biological realism have been object of criticism
(Ackermann and Doebeli, 2004; Abrams et al., 2008a). It is now a
task for empirical biologists to investigate the patterns of
resource distribution and competitive interactions in natural
populations that should dictate the kernels to be used in
future models. These empirically motivated kernels, in turn,
would help us to predict what populations are more prone to
disruptive selection.
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Appendix A

The variance of H(z, b, x(s)) given by

var ¼
x3
ð4b2

þ p2Þ

6b2 tanhðbÞ
¼

ffiffiffi
2
p

b�3s3ð4b2
þ p2Þ

3b2 cosh3
ðb�Þ tanhðbÞ

(A.1)

and its second derivative at z ¼ 0 by

H00ð0;b; xðsÞÞ ¼ � 2b2

x2 cosh2
ðbÞ
¼ �

b2 cosh2
ðb�Þ

s2b�2 cosh2
ðbÞ

. (A.2)

Notice that, for s fixed and b-N, the variance goes to a constant
(proportional to s3!) whereas the second derivative goes to zero.
Here b� ¼ 0:5 lnð2þ

ffiffiffi
3
p
Þ � 0:658 (see text).

Appendix B

The normalization constant for L(z, f, s) is given by (AL)
�1
¼ s

a(f) where

aðf Þ ¼
Z þ2f

�2f
e�u2=2ð1�f Þ du.

The variance of L is given by s2(1�f+4f2/3) and varies only slightly
from 1 to 4/3 as f is varied from 0 (Gaussian) to 1 (totally box-like).
We also define the auxiliary function

bðf Þ ¼
1

1� f

Z þ2f

�2f
u2 e�u2=2ð1�f Þ du

in terms of which the second derivative of L with respect to z

calculated at z ¼ 0 is given by

L00ð0; f ;sÞ ¼ � 1

ð1� f Þs2
1�

bðf Þ
aðf Þ

� �
.

Setting the competition function as C ¼ L(y�x, fc, sc) and the
resources kernel as K ¼ K0 L(x�x0, fk, sk) the condition for

disruptive selection R0040 [see Eq. (8)] can also be written in the
form scosk h(fc, fk) with

hðf c; f kÞ ¼
aðf cÞ � bðf cÞ

aðf kÞ � bðf kÞ

� �
ð1� f kÞaðf kÞ

ð1� f cÞaðf cÞ

� �1=2

. (B.1)
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